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Abstract
Studies examining species range shifts in the face of climate change have consistently found that response patterns are com-
plex and varied, suggesting that ecological traits might be affecting species response. However, knowledge of how the traits of 
a species determine its response to climate change is still poorly understood. Here we investigate the role of species-specific 
climate niche breadth in forecasting bumblebee (Bombus spp.) responses to regional climate warming in the Cantabrian Range 
(north-western Iberian Peninsula). Climate niche breadth was defined using known data for occurrences of specific species 
at their continental (i.e., European) scale of distribution. For each bumblebee species, climate niche breadth was found to be 
related to (1) the elevational range shifts of species between their historical (1988–1989) and recent (2007–2009) distribution 
and (2) the variation in the climatic conditions of the localities they inhabited (i.e., the local climate space) between both 
study periods. Our results show a strong relationship between climate niche breadth, particularly thermal niche breadth, and 
the response of bumblebee species to climate warming, but only when this response was determined as variations in local 
climate space. The main conclusions of our work are thus twofold. First, variations in the climatic conditions underlying range 
shifts are useful in making accurate assessments of the impact of climate change on species distributions. Second, climate 
niche breadth is a particularly informative ecological trait for forecasting variations in species responses to climate change.

Keywords  Climate niche · Climate-driven shifts · Elevation · Species traits · Species distribution · Specialist · Warming

Introduction

Widespread alterations in species distributions in the face 
of climate change have been documented (Scheffers et al. 
2016). To a large extent, this is because species need to track 
their climatic envelopes in order to continue to live within 
suitable environmental conditions (Sunday et al. 2011, 2012) 
and changes in the range boundaries of different species have 
consistently found that movement responses within a com-
munity are species-specific. This has resulted in the interest-
ing finding that while (as would be expected) most species 
are shifting toward cooler environments (e.g. Konvicka et al. 
2003; Hickling et al. 2006; La Sorte and Thompson 2007; 
Chen et al. 2011a, b), others are not shifting at all, or are per-
forming counter-intuitive range shifts (Crimmins et al. 2011; 
Tingley et al. 2012; Ploquin et al. 2013; Hiddink et al. 2015). 
This variability has been widely attributed to individual spe-
cies attributes, such as dispersal ability and environmental 
tolerance, which ultimately determine each species’ capacity 
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(and need) to track suitable climatic conditions via range 
shifts (Angert et al. 2011; Estrada et al. 2016).

Like many other pollinating insects, bumblebees (Bom-
bus Latreille, 1802) are experiencing a worldwide decline 
which has been attributed, among other drivers of global 
environmental change, to climate change (Cameron et al. 
2011; Goulson et al. 2015). Wide-scale reductions in range 
and abundance of these insects have indeed raised global 
concern about their impact on pollination services, espe-
cially in cool environments such as mountainous ecosys-
tems where most other pollinating insects are less active or 
even absent (Hegland et al. 2009). In the Cantabrian Range 
(north-western Iberian Peninsula), for instance, a previous 
study reported significant alterations in the elevational range 
between the historical (1988–1989) and recent (2007–2009) 
distributions of a bumblebee community (Ploquin et al. 
2013). Moreover, the same work reported that while most 
bumblebee species performed uphill shifts, others showed 
very little or no shift in their range, suggesting that species-
specific traits might underlie variations in the responses of 
each species to regional climate warming (Herrera et al. 
2014). However, no direct test of this hypothesis was under-
taken at that time.

In this work we investigated the role that climatic niche 
breadth plays in determining the species-specific response 
of bumblebees to the regional warming that has occurred 
over the past 2 decades (Álvarez et  al. 2009). Climatic 
niche breadth is assumed to play a pivotal role in modu-
lating the response of species since species distribution is 
widely recognized to be greatly influenced by climatic vari-
ables (Chejanovski and Wiens 2014; Kühsel and Blüthgen 
2015; Ralston et al. 2016), especially temperature (Soberón 
2007). Species-specific climatic niche breadth was ascer-
tained based on the range of climatic conditions that each 
species is able to tolerate and was therefore defined by their 
species-specific known occurrences at the continental (i.e., 
European) scale of their distribution (see Kamilar and Mul-
doon 2010 for a similar procedure).

Species-specific climatic niche breadth was first related 
to the extent of range shifts exhibited by each bumblebee 
species between the historical and recent study period 
(data from Ploquin et al. 2013). Specifically, we focused on 
changes in mean elevation as well as the upper and lower 
elevational range limits. Second, climatic niche breadth 
was related to the variation in the climatic conditions of 
the localities they inhabited (i.e., the local climate space) 
between both study periods. We incorporate the change in 
local climate space as response variable because exclusively 
focusing on the extent of range shifts might neglect (or at 
least underestimate) the fact that environmental variables 
may or may not covary with elevation or latitude, some-
thing that might ultimately lessen the predictive power of 
range shifts. Indeed, the potential mismatch between range 

and environmental shifts could be particularly important in 
mountainous systems where the orography typically modi-
fies the spatial patterning of temperature and humidity, even 
at fine spatial scales. Within this context, we expected that 
elevational shifts would be higher, and changes in local cli-
mate space lower as the climatic niche breadth of a species 
narrows since this would imply higher dependence on, and 
need to stay within, its climate envelope.

Materials and methods

Spatial and temporal framework

We used bumblebee distribution data from the Cantabrian 
Range (north-western Iberian Peninsula) in two study peri-
ods: 1988–1989 (Obeso 1992) and 2007–2009 (Ploquin 
et al. 2013). Regional temperature rose by ca. 0.9 °C over 
the two decades encompassed by these studies, resulting 
in an upward shift of isotherms of ca. 160 m based on a 
regional elevational temperature lapse rate of − 0.5  °C 
100 m−1 (Álvarez et al. 2009). For all analyses data regard-
ing bumblebee species presence and abundance from 78 
sites in the first study period (1988–1989) and 51 in the sec-
ond (2007–2009), which were used, with a total of 29 of the 
sites having been sampled in both study periods (Table S1). 
Sampling localities ranged from sites located at sea level, 
to those at approximately 2200 m a.s.l., thus the range of 
elevation represented virtually all the climatic conditions 
and suitable habitats for the regional pool of bumblebee spe-
cies in the study region (Herrera et al. 2014).

In both study periods, similar time-constrained samplings 
(1-h per sampling locality) were made within a 100 m radius 
circular area during the spring and summer seasons (mid 
May through late August) in order to avoid bias in the sam-
pling effort between sampling periods (see Obeso 1992 for 
a detailed description of sampling procedure). Based on 
the researchers’ knowledge of the study region and using 
visual estimations, surveys were carried out during maxi-
mum flower blooming to avoid differences in the composi-
tion of the bumblebee assemblage between localities as a 
result of variations in food-resource availability. Each site 
was sampled once. A total of 24 and 21 bumblebee species 
were identified in the first and second period, respectively 
(Ploquin et al. 2013). However, in this work we restricted 
our analysis to those bumblebee species occurring in at least 
ten localities in each study period. This was because very 
low prevalence (i.e., proportion of presences and absences 
for each species) is likely to reduce the discriminatory power 
of distinguishing between suitable and unsuitable sites (see 
Gutiérrez-Illán et al. 2010 for a similar approach). Accord-
ingly, 12 bumblebee species were used in all subsequent 
analyses.

Author's personal copy
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Determining climatic niche breadth for bumblebee 
species

Climatic conditions at local scales might represent only a 
sub-sample of the set of climatic conditions at which spe-
cies can occur at broader spatial scales (Quintero and Wiens 
2013). For this reason we determined the species-specific 
climatic niche breadth of bumblebees by estimating the 
range of climatic conditions where each species also occurs 
outside of their local distribution (Soberón 2007) using the 
continental-scale distribution dataset for West-Palearctic 
bumblebees (Rasmont et al. 2015). We overlapped these 
distribution maps with data from the WorldClim interpo-
lated climate surface maps (Hijmans et al. 2005) onto a 
GIS platform, assuming that the observed climatic space 
for each species would reflect the full range of climatic 
conditions under which it can exist, at least in terms of its 
West-Paleartic distribution (Feeley and Silman 2010). We 
used principal components analysis (PCA) in order to inte-
grate variation across climate variables between the grid 
cells occupied by bumblebee species (Table 1; Table S1). 
The variables used were annual mean temperature, annual 
temperature range (maximum temperature of the warm-
est month minus minimum temperature of coldest month), 
mean temperature of warmest quarter, mean temperature of 
coldest quarter, mean annual. The first eigenvector (PC1) 
was mainly related to temperature patterns while the second 
eigenvector (PC2) was mainly related to rainfall patterns 
(Table S2; Fig. S1). We therefore used PC1 to estimate the 
temperature niche breadth (i.e., the range of temperature 
conditions a species experiences over its continental distri-
bution; sensu Quintero and Wiens 2013) and PC2 to estimate 
the precipitation niche breadth for each bumblebee species, 
using the upper and lower limits (i.e., the 97.5 and 2.5% 

quantiles, respectively), from the collection of eigenvectors 
obtained for each bumblebee species. Quantiles were used 
rather than absolute maximums and minimums in order to 
reduce the impact of outliers potentially caused by errors in 
species identification and/or geo-referencing (see Feeley and 
Silman 2010 for a similar procedure).

Determining species response to regional warming

Changes in elevation patterns

The first response variable used to determine the role of cli-
mate niche breadth in explaining the response of bumblebees 
to regional climate change was the species-specific varia-
tions in elevation patterns between the first and second study 
period, based on data extracted from Ploquin et al. (2013).

Changes in local climate space

The second response variable used in the determination of 
the role of climate niche breadth was the species-specific 
variations in the local climate space between the first and 
second study period (Kamilar and Muldoon 2010). For each 
species, we thus calculated the proportional change in local 
temperature (hereafter CTC) and precipitation (CPC) condi-
tions as [|(P2/P1 − 1) × 100|], where P1 and P2 are the mean 
values of the climate variable concerned (i.e., either temper-
ature or precipitation) in the localities where the species was 
recorded in the first and second period, respectively. Local 
climate data for each locality came from the Climate Atlas 
of the Iberian Peninsula (Ninyerola et al. 2005), a database 
based on rainfall and temperature data, at c. 200-m reso-
lution, from 1950 onwards collected from more than 3000 
weather stations across the Iberian Peninsula. We focused on 

Table 1   Thermal and 
precipitation niche breadth for 
each bumblebee (Bombus spp.) 
species

Thermal and precipitation niche breadth were estimated using the difference between the 97.5% and 2.5% 
quantiles from the collection of eigenvectors resulting from the PCA used to summarize the climatic niche 
of each bumblebee species (see Table S1 and the main text for details). Minimum and maximum values are 
shown in brackets and number of distributional records (known locations) are shown in parentheses

Species Thermal niche breadth Precipitation niche breadth

B. hortorum (L., 1761) 6.2 [− 3.5, 3.5] (1059) 5.5 [− 2.7, 2.8] (1059)
B. jonellus (Kirby, 1802) 5.4 [− 3.9, 1.5] (908) 6.9 [− 3.9, 3.8] (908)
B. lapidarius (L., 1758) 6.4 [− 3.0, 3.3] (976) 4.8 [− 1.6, 3.2] (976)
B. lucorum (L., 1761) 6.8 [− 4.2, 2.6] (1186) 7.0 [− 2.9, 4.1] (1186)
B. mesomelas Gerstaecker, 1869 7.7 [− 4.5, 3.1] (151) 3.1 [− 0.6, 2.5] (151)
B. muscorum (L., 1758) 6.0 [− 2.8, 3.1] (510) 4.6 [− 1.3, 3.2] (510)
B. pratorum (L., 1761) 7.7 [− 4.0, 3.6] (1204) 6.9 [− 2.8, 4.1] (1204)
B. ruderarius (Müller, 1776) 5.7 [− 2.9, 2.7] (673) 4.3 [− 1.5, 2.8] (673)
B. sichelii Radoszkowski, 1859 5.6 [− 3.9, 2.0] (42) 4.5 [− 2.9, 2.7] (42)
B. soroeensis (Fabricius, 1793) 6.9 [− 4.3, 2.6] (959) 6.9 [− 2.6, 4.3] (959)
B. terrestris (L., 1758) 6.5 [− 2.4, 4.0] (949) 4.2 [− 1.3, 2.8] (949)
B. wurflenii Radoszkowski, 1859 7.2 [− 4.9, 2.3] (444) 7.5 [− 2.1, 5.3] (444)
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average temperature and rainfall because these variables play 
a key role in species distribution in mountain systems, where 
there are strong thermal and humidity gradients linked to 
elevation (e.g. Gutiérrez-Illán et al. 2010; Stefanescu et al. 
2011; Herrera et al. 2014).

In order to obtain means (and deviation) in CTC and CPC 
measurements, we drew 500 bootstrap re-samples for each 
species using a random sample of individuals from the first 
and second datasets. Individual-based sub-sampling (i.e., 
extracting a random number of individuals from survey data 
irrespective of the total catches at each locality) rather than 
locality based (i.e., extracting a fixed number of specimens 
for each locality, e.g. Chen et al. 2011a) was applied because 
of the low number of individuals of particular species in 
some localities. Both CTC and CPC values for each spe-
cies were calculated by one-sample t-test, using sequential 
Bonferroni corrections (Table S3; see Ploquin et al. 2013 
for a similar procedure). All statistical analyses related to 
CTC and CPC shown hereinafter were based on this sub-
sampling procedure.

Relationships between climate niche breadth 
and local climate

The relationships between climate niche breadth and both 
response variables (i.e., change in local climate space and 
elevational range shifts between study periods were tested 
using simple linear and quadratic regressions). Statistical 
analysis for both the two regressions and for Principal Com-
ponent Analysis (PCA) were performed using, respectively, 
the lm and stats packages of the statistical software R (R 
Development Core Team 2016). All normality requirements 
were fulfilled and the presence of spatial autocorrelation in 
the data was also checked with Moran’s I tests using the 
library ade4 (Dray and Dufour 2007). No spatial structure 

was found in the residuals, thus indicating it to be a suitable 
spatial framework with which to test temporal changes in 
bumblebee distribution irrespective of spatial constraints. 
Means ± SE are used throughout the text, unless otherwise 
stated.

Results

Climate niche breadth and species responses

Table 1 shows the range, as well as the minimum and maxi-
mum values, of the eigenvectors resulting from the PCA 
used to summarize the climatic niche of each bumblebee 
species. We found variations in climate niche breadth 
between individual species, the lowest temperature niche 
breadth, 5.4, being for B. jonellus and the highest, 7.7, for 
both B. mesomelas and B. pratorum, while precipitation 
niche breadth ranged from 3.1 for B. mesomelas to 7.5 for 
B. wurflenii.

Shifts in both mean elevation and the lower and upper 
boundaries were found between the historical and recent dis-
tribution of bumblebee species and are shown in Table 2, 
where the strong variations in the responses of bumblebees 
to regional climate warming are evident.

Table 3 provides data on changes in the local climate 
space of inhabited localities between sampling periods, spe-
cifically, the proportional change in temperature (CTC) and 
precipitation (CPC) conditions (see also Table S3). CTC val-
ues were higher than CPC values in all bumblebee species, 
but there was also variation between species: CTC ranged 
from 4.2 ± 2.2 in B. jonellus to 23.4 ± 2.4 in B. wurflenii, 
and CPC ranged from 0.3 ± 2.6 in B. muscorum to 9.2 ± 2.3 
in B. ruderarius.

Table 2   Shifts of mean 
elevation, and both upper and 
lower boundaries between 1988 
and 1989 and 2007–2009 (m). 
Data extracted from Ploquin 
et al. (2013)

Means (± SE) are shown. Positive values indicate uphill shifts while negative values indicate downhill 
shifts

Species Mean elevation Lower boundary Upper boundary

B. hortorum (L., 1761) − 522.7 (134.8) − 8.0 (31.8) −7.1 (159.0)
B. jonellus (Kirby, 1802) + 88.3 (97.6) − 615.3 (186.2) + 203.9 (19.8)
B. lapidarius (L., 1758) + 291.5 (100.6) 570.2 (421.4) + 61.7 (271.8)
B. lucorum (L., 1761) + 395.3 (120.1) + 252.2 (389.4) + 273.4 (213.6)
B. mesomelas Gerstaecker, 1869 + 67.1 (93.9) + 642.9 (177.3) −1.0 (14.4)
B. muscorum (L., 1758) + 717.8 (121.4) + 61.5 (53.8) + 258.1 (148.5)
B. pratorum (L., 1761) + 396.6 (159.9) + 42.5 (67.5) + 216.6 (99.8)
B. ruderarius (Müller, 1776) + 108.0 (74.8) + 429.0 (553.7) + 22.9 (179.7)
B. sichelii Radoszkowski, 1859 − 145.4 (107.6) − 34.3 (132.3) −75.3 (121.5)
B. soroeensis (Fabricius, 1793) − 99.8 (124.6) + 226.7 (166.1) −116.2 (233.0)
B. terrestris (L., 1758) − 73.6 (167.4) + 9.1 (10.2) −1.4 (280.8)
B. wurflenii Radoszkowski, 1859 + 315.1 (66.1) + 1151.5 (245.8) −69.7 (149.1)
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Climate niche breadth on species responses

No relationship between climatic niche breadth (i.e., thermal 
niche breadth or precipitation niche breadth) and any of the 
observed elevational shifts (i.e., mean elevation or lower and 
upper elevation boundary) was found (r2 < 0.1 and P > 0.05 
in all pairwise combinations; Fig. 1). Climate niche breadth, 
however, was strongly correlated with changes in local climate 
space. Specifically, thermal niche breadth was significantly 
related to CTC (quadratic polynomial regression: r2 > 0.75; 
P < 0.001) such that the greater the change in temperature 
conditions between the two study periods the broader the 
thermal niche breadth (Fig. 2). This was primarily accounted 
for by the strong relationship between CTC and changes in 
the lower elevational boundary of distribution of bumblebee 
species between their historical and recent distribution, rather 
than with other elevational changes (Fig. 3). On the other hand, 
precipitation niche breadth significantly related to CPC (poly-
nomial regression: r2 > 0.50; P < 0.05). Thus, species showing 
extreme values of rainfall tolerance were those showing higher 
variations between both sampling periods in the precipitation 
patterns of inhabited localities. Furthermore, a significant rela-
tionship between CTC and CPC was also found (linear regres-
sion: r2 = 0.50; F1,11 = 10.08; P = 0.009).

Discussion

The importance of ecological traits in determining the 
impact of climate change on species distributions has 
mainly been analyzed using the extent of range shifts as 
response variable. Our work, however, demonstrates that 
climate niche breadth (especially thermal niche breadth) 
can explain the response of bumblebee species to regional 
climate change in mountain areas of the Northern Iberian 
Peninsula, but only when this response is quantified in terms 
of variations in local climate space. Our work thus suggests 
that the exclusive use of range shifts may lessen the predic-
tive power of such species traits in determining the impact of 
climate change on species distribution (Classen et al. 2015). 
It should be noted that we are not suggesting that using range 
shifts should in all cases be replaced by consideration of 
only the variations in climatic conditions underlying such 
shifts, but rather that using variations in local climatic condi-
tions instead of range shifts themselves can be particularly 
informative in mountainous systems where the orography 
typically modifies the spatial patterns of climatic variables 
even at fine spatial scales (Rangwala and Miller 2012).

Despite climate being widely recognized as critical in 
determining the distribution patterns of bumblebees at fine 
spatial scales (e.g. Iserbyt and Rasmont 2012; Rasmont and 
Iserbyt 2012; Herrera et al. 2014) as well as broad (Wil-
liams et al. 2007, 2009; Kerr et al. 2015; this study), the role Ta
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of climatic niche breadth in forecasting variations in their 
species-specific responses to climate change has been sur-
prisingly neglected (e.g. Deutsch et al. 2008; Tingley et al. 
2009; Sinervo et al. 2010). To a large extent, this might be 
related to the lack of broad-scale distribution maps which are 
necessary to take into account the complete range of climatic 
conditions at which a species occurs. However, with the bur-
geoning availability of fine-grained, broad scale datasets 

such as those used in this study (Rasmont et al. 2015), 
determining climatic niche breadth for individual species has 
become feasible, not only for bumblebees, but for an increas-
ing number of species belonging to very distinct taxonomic 
groups (e.g. Kamilar and Muldoon 2010). Indeed, accurate 
information regarding species distribution patterns coupled 
with high-resolution climatic data sets is widely considered 
as being one of the most promising ecological approaches to 

Fig. 1   Relationships between thermal niche breadth (TNB; left 
panels) and precipitation niche breadth (PNB; right panels) and 
changes in mean elevation (ME; upper panels), lower limit (LL; mid-
dle panels) and upper limit (UL; lower panels) between the histori-
cal (1988–1989) and recent (2007–2009) distribution of bumblebees 
in the Cantabrian Range. PC1 and PC2 on the y axes correspond to, 

respectively, Principal Components 1 and 2 used to estimate thermal 
and precipitation niche breadth. Statistics (using quadratic regres-
sions): TNB-ME: r2 = 0.04, F1,11 = 0.45, P = 0.51; TNB-LL: r2 = 0.29, 
F1,11 = 4.19, P = 0.07; TNB-UL: r2 = 0.00, F1,11 = 0.03, P = 0.84 
and PNB-ME: r2 = 0.05, F1,11 = 0.26, P = 0.77; PNB-LL: r2 = 0.26, 
F1,11 = 1.65, P = 0.24; PNB-UL: r2 = 0.06, F1,11 = 0.32; P = 0.73
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describing, analyzing and predicting the impact of climate 
change on the spatial patterns of a species’ distribution.

Specifically, we found that the wider the thermal niche 
breadth of bumblebees, the stronger the change in the tem-
perature conditions (CTC) of their species-specific inhab-
ited localities between study periods. This response pattern 
is to be expected as thermal specialists (i.e., those species 
showing narrower thermal niches) necessarily need to track 
their preferred thermal conditions in order to remain within 
their climate envelopes (Bellard et al. 2012). In contrast, 
thermal generalists are assumed to be resilient to changing 
climatic conditions, enabling them to be present in a wider 
range of thermal conditions in a climatic change scenario. 
These same response patterns for specialist and generalist 

species have indeed been previously shown for butterfly spe-
cies in other nearby Iberian mountain areas (Stefanescu et al. 
2011). In close agreement with the conclusions of Ploquin 
et al. (2013), we found that variations in a species’ thermal 

Fig. 2   Relationships between thermal niche breadth (TNB) of bum-
blebees and the proportional change in temperature conditions of 
inhabited localities (CTC) between their historical (1988–1989) and 
recent (2007–2009) distribution (upper panel), and between precipita-
tion niche breadth (PNB) and the proportional change in precipitation 
conditions of inhabited localities (CPC). PC1 and PC2 in y axes cor-
respond, respectively, to Principal Components 1 and 2 used to esti-
mate thermal and precipitation niche breadth. Statistics (using quad-
ratic regressions): TNB-CTC: r2 = 0.76, F1,11 = 14.27, P = 0.001 and 
PNB-CPC: r2 = 0.53, F1,11 = 5.10, P = 0.03

Fig. 3   Relationships between change in temperature conditions of 
inhabited localities (CTC) and changes in mean elevation (ME; upper 
panel), lower limit (LL; middle panel) and upper limit (UL; lower 
panel) between study periods. Statistics (using quadratic regres-
sions): CTC-ME: r2 = 0.22, F1,11 = 2.9, P = 0.10; CTC-LL: r2 = 0.51, 
F1,11 = 10.64, P = 0.008; CTC-UL: r2 = 0.01, F1,11 = 0.00, P = 0.90. 
Only statistically significant relationships are shown
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climate space were mainly driven by marked upwards shifts 
in its lower elevational boundaries, particularly in those spe-
cies at the southern limit of their distribution in the Canta-
brian Range, such as B. mesomelas and B. wurflenii (Ras-
mont et al. 2015). Our data thus underlines the particular 
sensitivity to climate change of bumblebee species on the 
basis of their niche position and breadth (Williams et al. 
2007, 2009), and reinforces the idea that global warming 
poses an immediate and severe threat to cool-adapted spe-
cies in mountain areas in temperate mountain areas (Warren 
et al. 2001; Penado et al. 2016).

We also found precipitation niche breadth to play a signif-
icant role in explaining the response of a species to regional 
climate change. Specifically, we found a quadratic u-shaped 
relationship between the species’ precipitation niche breadth 
and the rate of change in precipitation patterns of inhab-
ited localities between sampling periods(CPC). We suggest, 
however, that this response pattern could be related to the 
strong and positive relationship between CTC and CPC since 
the spatial distribution of bumblebee species was principally 
driven by temperature and only to a lesser extent by precipi-
tation patterns. This means that each species’ need to track 
suitable thermal conditions in response to climate change 
could be so strong as to be the determining factor in CPC. 
Indeed, this idea is supported by the fact that the species 
showing higher values of CPC (left side of Fig. 2) were 
among those showing the highest values of CTC (e.g. B. 
mesomelas and B. terrestris).

Conclusions

The main conclusions of this work are twofold. On the one 
hand, it suggests that variations in the climatic conditions 
underlying range shifts (rather than range shifts themselves) 
are useful for making an accurate assessment of the impact 
of climate change on a species’ distribution, as well as 
the role of the species-specific traits at explaining such an 
impact. This finding is by no means trivial as the importance 
of ecological traits in determining the impact of climate 
change on species distributions has, to date, mainly been 
analyzed using range shifts as response variable. In this con-
text, and in the absence of a significant relationship between 
a given ecological trait and the strength and direction of 
range shifts, most previous studies have concluded that such 
species-specific ecological traits have poor predictive power.

On the other hand, our work highlights climatic niche 
breadth as a particularly informative ecological trait for 
forecasting variations in bumblebee responses to climate 
change. Our findings are thus in line with previous works 
suggesting that differences in climatic tolerance might be 
key to determining the ability of different bumblebee spe-
cies to cope with climate change. What is more, the current 

study expands on previous works by showing not only how 
sensitive bumblebees are to different climatic factors, but 
also how this information can be used to understand the 
mechanisms underlying climate-driven shifts.
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